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Extinction of a long-lived isolated stochastic population can be described as an exponentially slow decay of
quasistationary probability distribution of the population size. We address extinction of a population in a
two-population system in the case when the population turnover—renewal and removal—is much slower than
all other processes. In this case there is a time-scale separation in the system which enables one to introduce a
short-time quasistationary extinction rate W1 and a long-time quasistationary extinction rate W2, and to develop
a time-dependent theory of the transition between the two rates. It is shown that W1 and W2 coincide with the
extinction rates when the population turnover is absent and present, but very slow, respectively. The exponen-
tially large disparity between the two rates reflects fragility of the extinction rate in the population dynamics
without turnover.
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I. INTRODUCTION

An isolated stochastic population �of molecules, bacteria,
animals, parasites inhabiting a community of hosts, etc.� ul-
timately goes extinct. The ultimate extinction is driven, even
in the absence of unfavorable environmental variations, by
large demographic fluctuations: chains of random events
when population losses dominate over gains. The risk of
population extinction is a major issue in viability of small
populations in the nature �1,2�, whereas extinction of an en-
demic disease from a community �1,3� is a desirable devel-
opment.

Calculating the extinction rate of a stochastic population
is a challenging problem. Here, one needs to evaluate the
�very low� probability of a large fluctuation in a stochastic
system which is far from equilibrium and therefore defies
many standard assumptions and methods of statistical me-
chanics. In spite of this difficulty a significant progress has
been achieved in this type of problems via the use of a
Wentzel-Kramers-Brillouin �WKB� approximation borrowed
from quantum mechanics �or, more generally, wave mechan-
ics� and adapted to the dissipative non-Hermitian stochastic
Markovian processes �4�. The WKB approximation employs,
as a large parameter, the typical population size in the meta-
stable quasistationary state. For a broad class of single-
population stochastic systems this approximation, comple-
mented by additional perturbation techniques, yields accurate
and controlled analytical results for the population extinction
rate �5�. Stochastic systems involving multiple populations
present a much harder problem. Here, one arrives—already
in the leading order of the WKB approximation—at a gener-
ally nonintegrable multidimensional problem of classical
mechanics. Although the extinction rates and most probable
paths of the system to extinction can be found numerically,
analytical insight is usually limited. The situation improves,
however, if the multipopulation system exhibits time-scale
separation. This may happen in two cases: �i� when the mul-
tipopulation system is close to a bifurcation of the underlying
deterministic rate equations �6,7� and �ii� when there is a

wide difference in individual process rates. The present paper
deals with the second case. The process rate disparity intro-
duces an additional small parameter ��1, which enables one
to separate, with controlled accuracy, a two-population sys-
tem into a fast and slow subsystems. Each of these sub-
systems is one dimensional and therefore amenable to ana-
lytical solution.

Time-scale separation was recently employed in Ref. �8�
for calculating the extinction rate of a biologically important
component regulated by chemical reactions in a living cell.
In that class of systems the extinction probability flux sets in
on the slow time scale, whereas the fast subsystem �which
rapidly adjusts to the slowly varying distribution of the slow
subsystem� modifies the effective production rate of the
population on the way to extinction. In the present work we
consider a different class of systems which enables us to
generalize the standard notion of the quasistationary extinc-
tion rate by defining and calculating a time-resolved quasis-
tationary extinction rate. It turns out that this quantity
smoothly changes in time from a short-time asymptote W1 to
a long-time asymptote W2. The short-time quasistationary
extinction rate W1 sets in already on the fast time scale.
Notably, W1 coincides with the extinction rate in the case
when the slow processes are absent altogether. Then, as the
probability distribution evolves toward the long-time quasis-
tationary distribution �QSD�, the extinction rate undergoes a
smooth but exponentially large change and approaches W2.
This evolution occurs on the time scale of the slow sub-
system �which is much longer than the time scale of the fast
subsystem but much shorter than the mean time to extinction
�MTE� �ex�W2

−1�. The exponentially large disparity of W1
and W2 is an instance of the recently discovered extinction
rate fragility �9�, where �ex experiences a discontinuity when
the rates of the slow processes are taken to zero. Essentially,
the present work renders an alternative time-resolved de-
scription to the phenomenon of extinction rate fragility.

We will present the theory on the example of a well-
known model of epidemiology: the stochastic susceptible-
infected-susceptible �SIS� model �3,10� with a slow popula-
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tion turnover—renewal and removal. Section II presents the
governing equations and explains how to exploit the time-
scale separation. In Sec. III we approximately solve the dy-
namics of the fast and slow subsystems, calculate the time-
resolved disease extinction rate, and compare our analytical
predictions with a numerical solution of the exact master
equation. Section III also deals with the mean time to extinc-
tion of a population exhibiting a time-dependent extinction
rate. Section IV presents a discussion of our results.

II. GOVERNING EQUATIONS AND TIME-SCALE
SEPARATION

The stochastic SIS model �3,10� describes a Markovian
process involving susceptible and infected subpopulations.
Upon recovery the infected individuals become susceptible
again. The probability Pn,m�t� to observe, at time t ,n suscep-
tible and m infected individuals is governed by the master
equation with transition rates from Table I. One can always
represent the renewal rate of susceptible individuals—an in-
dependent parameter of the model—as �N, where N, an al-
ternative independent parameter, scales as a typical average
total population size in a steady state. Rescaling time by the
recovery rate, �t→ t, one can write down the master equation
for the SIS model as

d

dt
Pn,m�t� = �NPn−1,m − �NPn,m + ��n + 1�Pn+1,m − �nPn,m

+ ��m + 1�Pn,m+1 − �mPn,m + �R/N��n + 1��m

− 1�Pn+1,m−1 − �R/N�nmPn,m + �m + 1�Pn−1,m+1

− mPn,m, �1�

where �=� /�, R=� /�, and we assume that Pn,m=0 if at
least one of the indices n or m is negative. We will assume
throughout this work that N�1 and R−1=O�1��0. A slow
population turnover implies smallness of �. For our theory to
be accurate it is necessary that a strong inequality ��1 /N
holds. If one does not care, however, for pre-exponential
factors, this condition can be relaxed to a much less restric-
tive one, ��1, as we explain below.

The ultimate state of the SIS model is infection-free.
When R−1=O�1��0 there is a quasistationary endemic
state with a lifetime �ex, which is exponentially long with
respect to N. To get an insight into how this quasistationary
state is approached, let us consider the deterministic rate
equations of the SIS model which operate with the average
numbers n̄ and m̄ of susceptible and infected individuals,
respectively,

ṅ̄ = ��N − n̄� −
R

N
n̄m̄ + m̄ , �2�

ṁ̄ =
R

N
n̄m̄ − m̄ − �m̄ . �3�

These equations accurately describe the dynamics of n̄ and m̄
at times short compared with �ex. The attracting fixed point
of Eqs. �2� and �3�,

n̄� =
N�1 + ��

R
�

N

R
, �4�

m̄� = N�1 −
1 + �

R
� � N�1 −

1

R
� , �5�

describes the endemic state of the population which is typi-
cally reached on the long demographic time scale ��=�−1

�1. �To remind the reader, our time is rescaled by the re-
covery rate �.� What happens on a much shorter epidemic
time scale �1�1? It will be assumed that the initial average

size of the total population, k̄= m̄+ n̄, is greater than N /R,
which is important for the further discussion. On the time
scale �1�1 the terms proportional to � can be neglected, and
one can see that the average number of susceptible individu-
als approaches N /R, which is close to n̄�. In its turn, the
average number of infected rapidly adjusts to the current

value of the average total population size k̄: m̄k̄= k̄−N /R.

Restoring the � terms, one can see that k̄= k̄�t� is a slow
function of time, and its dynamics is described by the simple
equation

k̇̄ = ��N − k̄� , �6�

obtained by summing up Eqs. �2� and �3�. As a result, k̄�t�
slowly flows to N,

k̄�t� = N + �k0 − N�e−�t,

and the average number of infected m̄k̄ approaches m̄� from
Eq. �5�. On the phase plane n̄ , m̄ �see Fig. 1�, the trajectory
first rapidly reaches the vertical line n̄=N /R and then slowly,
on the long time scale ��, approaches the ultimate fixed point
�4� and �5� along this vertical line.

How is this determinisitic dynamics reflected in the actual
evolution of Pn,m�t�? At times �1	 t	�� the distribution
Pn,m�t� is peaked at n�N /R ,m� m̄k̄�t� and evolves in time
on the demographic time scale ����1. At longer times, �


	 t	�ex the distribution reaches its long-time asymptote. It
is important that a well-defined extinction probability flux
sets in quite rapidly, at t��1, and it varies in time on the
time scale ��. It is obvious that, in general, the disease ex-
tinction rate at t��� should be very different from its value
at t���. Indeed, even the average numbers of susceptible
and infected are generally very different at the earlier and
later times. It turns out, however, that an exponentially large
disparity in the disease extinction rate at short and long times

TABLE I. Stochastic SIS model with population turnover.

Event Type of transition Rate

Infection S→S−1, I→ I+1 �� /N�SI

Recovery S→S+1, I→ I−1 �I

Renewal of susceptible S→S+1 �N

Removal of susceptible S→S−1 �S

Removal of infected I→ I−1 �I
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is observed even in the special case of k̄�t=0�=N, when the
average numbers of susceptible and infected remains �al-
most� constant on the slow time scale ��.

The time-dependent disease extinction rate is defined as

W�t,�� 	 − � d

dt



n,m�0
Pn,m�� 


n,m�0
Pn,m�−1

. �7�

The limit of W�t ,�� as t→� is denoted by W2��ex
−1. For t

��ex one has 
n,m�0Pn,m�1. As a result, for these times

W�t,�� � −
d

dt



n,m�0
Pn,m 	 w�t,�� , �8�

where w�t ,�� is the disease extinction probability current. To
calculate w�t ,�� we return to the master equation �1� and
notice that the disease can disappear from the population
only via transitions from any of the states �n ,1�, where n
=0,1 , . . ., to the state �n ,0�. Therefore,

w�t,�� = 

k=0

�

wk�t� = 

k=1

�

�1 + ��Pk−1,1�t� , �9�

where

wk�t� = �Pk−1,1 + �Pk,1, k � 0

�P0,1, k = 0.
� �10�

As a result, for t��ex,

W�t,�� � w�t,�� = 

k=1

�

�1 + ��Pk−1,1�t� . �11�

Before exploiting the time-scale separation, let us first obtain

some exact relations. Consider P̄k=
m=1
k Pk−m,m �k
1�,

which is the probability to find k
1 individuals so that at
least one of them is infected. Summing Eq. �1� over m while
keeping the total number k=n+m of individuals constant, we
obtain an exact equation,

d

dt
P̄k�t� = �NP̄k−1 − ��N + k�P̄k + ��k + 1�P̄k+1 − wk−1,

�12�

where P̄0	0. An additional exact equation can be obtained
once we represent the probability Pn,m�t� as

Pn,m = P̄k�m+n=k,m
1
m, �13�

where �m+n=k,m
1
m�t�	 Pn,m�t��P̄k�t��−1, defined for m
1,
is the probability to have m infected individuals conditioned
on n+m=k and m
1. We will use the following shorthand:

Pk�m� = �m+n=k,m
1
m�t� . �14�

This conditional probability is identically equal to zero for
m�0 and m�k, and it obeys the following exact equation:

d

dt
Pk�m� = Pk�1�Pk�m� + �Pk+1�1�Pk�m�P̄k+1�P̄k�−1 +

R

N
�k

− m + 1��m − 1�Pk�m − 1� −
R

N
�k − m�mPk�m�

− mPk�m� + �m + 1�Pk�m + 1�

− �P̄k�−1��NP̄k−1�Pk�m� − Pk−1�m�� + ��k

+ 1�P̄k+1�Pk�m� − Pk+1�m�� + �P̄k+1�mPk+1�m�

− �m + 1�Pk+1�m + 1��� . �15�

The disease extinction rate �11� in the new notation reads

W�t,�� � w�t,�� = �1 + ��

k=1

�

P̄k�t�Pk�1��t� . �16�

At t��ex, the exponentially small term wk−1 in Eq. �12� can
be neglected, and we obtain

d

dt
P̄k�t� = �NP̄k−1 − ��N + k�P̄k + ��k + 1�P̄k+1. �17�

We see that the evolution of P̄k�t� at t��ex proceeds on the
slow time scale �� and is decoupled from the evolution of
Pk�m�. Equation �17� describes the relaxation of the prob-

ability distribution P̄k�t� to the steady-state distribution P̄k
�0�.

The latter is determined from the equation

�NP̄k−1
�0� − ��N + k�P̄k

�0� + ��k + 1�P̄k+1
�0� = 0, �18�

subject to normalization 
k=1
� P̄k

�0�=1.
The evolution of Pk�m� is fast at t��1 and slow at �1

� t��ex. The solution of Eq. �15� at �1� t��ex can be
sought in the form

Pk�m,t� = Pk
�0��m� + �NPk

�1��m,�t� + ��N�2Pk
�2��m,�t� + ¯ ,

�19�

where Pk
�0��m� obeys the stationary equation

0 0.4 0.8 1.2
0

0.4

0.8

n�N

m
�N

FIG. 1. The phase portrait of the deterministic rate equations �2�
and �3�. The filled circles show the attracting fixed point �see Eqs.
�4� and �5�� and the repelling fixed point n̄=N , m̄=0. The arrows
show the flow directions on the phase plane. The parameters are
R=2 and �=5�10−3.
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Rk

k
�k − m + 1��m − 1�Pk

�0��m − 1� −
Rk

k
�k − m�mPk

�0��m�

− mPk
�0��m� + �m + 1�Pk

�0��m + 1� + Pk
�0��1�Pk

�0��m� = 0,

�20�

where 
m=1
k Pk

�0��m�=1. For �N�1 and t��1 we can confine
ourselves only to the leading term Pk

�0��m� in Eq. �19�. In the
following we will omit the superscript �0�. Importantly, Eq.

�20� does not include P̄k.
Each of the decoupled equations �17� and �20� has a

simple meaning. Equation �20� describes a one-dimensional
QSD of the number of infected in the SIS model without
population turnover, where the total population size is con-
served, k=const. This QSD forms relatively rapidly, at t
��1, so we can call this subsystem fast. Once the QSD is
found, Pk�1� yields the disease extinction rate for the given
k.

In its turn, Eq. �17� describes the evolution of a one-
dimensional time-dependent distribution of the total popula-
tion size k. The characteristic time scale of this time depen-
dence is ��=�−1��1, so we can call this subsystem slow.
Having found the slowly evolving distribution, one can cal-
culate the time-resolved disease extinction rate from Eq. �16�
�with the � term dropped to avoid excess of accuracy�,

W�t,�� � 

k=1

�

P̄k�t�Pk�1� . �21�

This rate is nothing but the average of the instantaneous
extinction rate for a given k �found from the fast subsystem�
over the time-dependent k distribution �found from the slow
subsystem�. This result is valid when t��1 and �N�1.

The next section deals with the solution of Eqs. �17� and
�20�, and with calculating W�t ,��, for a class of initial con-
ditions for which the total number of individuals at t=0 is
equal to N,

P̄k
t=0 = �k,N, �22�

where �k,N is the Kronecker delta. This special choice of
initial condition will make it possible to relate the foregoing
time-dependent picture of extinction to the phenomenon of
extinction rate fragility.

III. SOLVING THE TIME-SCALE-SEPARATED PROBLEM

A. Fast subsystem

Disease extinction in the stochastic SIS model without
population turnover has been extensively studied starting
from the pioneering paper by Weiss and Dishon �10�. The
mean time to extinction of the disease in this case was first
obtained by Nåsell �11� �see also Refs. �5,12��. The extinc-
tion rate, rescaled to the recovery rate �, is equal to

Pk�1� �� k

2�

�Rk − 1�2

Rk
exp�− k� 1

Rk
+ ln Rk − 1�� ,

�23�

where Rk=kR /N; here and in the following the superscript
�0� in Pk

�0��1� is omitted. Equation �23� holds when the factor
in the exponent is sufficiently large in absolute value
�5,11,12�,

k� 1

Rk
+ ln Rk − 1� � 1.

The particular value of the extinction rate for k=N is nothing
else but W1: the disease extinction rate observed at times
�1	 t���, when the distribution of infected has already
adapted to the current value of k, but the k distribution has
not yet evolved and is still close to the Kronecker delta �22�,

W1 �� N

2�

�R − 1�2

R
exp�− N� 1

R
+ ln R − 1�� . �24�

B. Slow subsystem

Equation �17� is exactly solvable �13� with the help of the
probability generating function,

G�z,�� = 

k=0

�

zkP̄k��� , �25�

where z is an auxiliary variable and �= t /��=�t. Once G�z ,��
is found, the probabilities P̄k��� can be recovered from the
Taylor expansion,

P̄k��� =� 1

k!

�kG�z,��
�zk �

z=0
. �26�

After a simple algebra the master equation �17� becomes an
evolution equation for G�z ,��,

�G

��
= �1 − z�� �G

�z
− NG� . �27�

This first-order partial differential equation can be solved by
characteristics. The general solution is

G�z,�� = eNzf�1 − z

e� � , �28�

where f��� is an arbitrary function. To determine f���, one

should use the initial condition. In terms of P̄k it is given by
Eq. �22�. In terms of G we obtain

G�z,� = 0� = 

0

�

zk�k,N = zN.

This yields f���= �1−��Ne−N�1−��, and so the resulting solu-
tion, in terms of G, is

G�z,�� = �1 +
z − 1

e� �N

exp�N�z − 1��1 − e−��� . �29�

In the limit of ��1 we obtain G�z ,��=exp�N�z−1��. This
describes a Poisson distribution with mean N,
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P̄k�t � ��� =� 1

k!

�kG�z,� = ��
�zk �

z=0
=

Nke−N

k!
. �30�

Using this Poisson distribution we can calculate W2��ex
−1:

the long-time asymptote of the disease extinction rate W���

� t��ex�, observed when the k distribution has already
reached quasistationarity. As k�1, we can use Stirling’s for-
mula for k! and obtain

P̄k��� � t � �ex� �
eN�x−1−x ln x�

�2�Nx
, �31�

where x=k /N. Now we calculate W�t����	W2 by using
distributions �23� and �31�. Replacing the sum over k with an
integral over x=k /N in Eq. �16�, we obtain

W2 �
N

2�
�

R−1

�

dx
�Rx − 1�2

Rx
exp�− N�x ln Rx + x ln x − 2x + 1

+ 1/R�� . �32�

As N�1, the integral can be evaluated by the saddle-point
method �as a result, the exact location of the lower bound of
integration is actually unimportant�. The saddle-point condi-
tion ln�Rxs�+ln xs=0 yields xs=1 /�R, corresponding to k
=N /�R. By virtue of Eq. �21�, k=N /�R is the most probable
total population size when the number of infected is exactly
one. Performing the Gaussian integration, we obtain

W2 �
�N��R − 1�2

2��R3/4 exp�− N�1 −
1

�R
�2� . �33�

This result, without the pre-exponential factor, was obtained
by Khasin and Dykman �9� who used �the leading order of�
WKB approximation. The important pre-exponent has not
been known previously.

For the special class of initial conditions �22�, the short-
time, W1 �Eq. �24��, and the long-time, W2 �Eq. �33��, qua-
sistationary extinction rates correspond to the quasistationary
extinction rates observed without population turnover and
with a very slow population turnover, respectively. For R
−1=O�1� the rate W2 is exponentially larger than W1. This
exponential disparity reflects fragility of the extinction rate
of the system without population turnover with respect to
addition of slow population turnover. Although the fragility
phenomenon was established in the � domain �9�, we see that
a closely related phenomenon is also observed, for proper
initial conditions, in the time domain.

Now we discuss an important applicability criterion of our
theory. The main contribution to integral �32� comes from a
relatively narrow, O��N�, vicinity of the saddle point k
=N /�R. In this vicinity, Eq. �23� is valid if it describes a
quasistationary distribution on the time scale ��. The corre-
sponding criterion, �� PN/�R�1�, serves as the lower bound
on � for the validity of Eq. �33�. For N�1 and R−1=O�1�
the quantity PN/�R�1� is exponentially larger than W2. There-
fore, the criterion �� PN/�R�1� is much more restrictive than
the obvious criterion ��W2. Returning to the fragility prob-
lem, we note that at �	 PN/�R�1� the extinction rate experi-
ences a gradual crossover from W2 to W1 in the � domain.

Let us return to Eq. �29� and find the time-dependent dis-

tribution P̄k��� from Eq. �26�. It is convenient to calculate the
derivatives in the complex z plane by using the Cauchy theo-
rem,

P̄k��� =
1

2�i
� dz

zk+1G�z,�� , �34�

where the integration contour encircles the pole z=0 of the
complex plane z. As k�1 and N�1, we can evaluate the
contour integral using the saddle-point approximation and
deforming the contour so as to achieve the steepest descent.
Using Eq. �29�, we rewrite Eq. �34� as

P̄k��� =
1

2�i
� dz

eN��z,x,��

z
, �35�

where

� = ln�1 +
z − 1

e� � + �z − 1��1 − e−�� − x ln z

and x=k /N. The saddle point z=z��x ,�� is determined from
the equation �� /�z=0. The suitable solution is

z��x,�� = �2�1 − e−���−1�1 + x − 2 cosh �

+ �3 + x�x − 6� + 4�x − 1�cosh � + 2 cosh 2�� .

�36�

Now we expand

��z,x,�� � ��z�,x,�� + 1
2���z�,x,���z − z��2.

At ��0 one has ���z� ,x ,���0. Therefore, the steepest de-
scent of the function � occurs along the straight line Re z
=z� of the complex plane �see Fig. 2�, so we deform the
contour accordingly. In view of N�1 a small segment of the
straight line Re z=z� gives a dominant contribution to the
integral, and the Gaussian integration yields

P̄k��� �
eN��z�,x,��

z�
�2�N���z�,x,��

. �37�

As a simple test of this result, one can go to the limit ��1
and obtain z�=x and ��=1 /x. Then Eq. �37� yields Eq. �31�
as expected.

C. Time-resolved extinction rate

Now we return to Eq. �21� and calculate the time-resolved
extinction rate W�t ,��=W��� of the disease by averaging the
instantaneous extinction rate �23� over the slowly time-
dependent distribution �37�. Replacing the sum over k with
an integral over x=k /N and evaluating the integral by the

z�0

Re z

Im
z

FIG. 2. �Color online� The steepest descent path for Eq. �35�.
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saddle-point method, we obtain after some algebra

W��� �
�Rxs��� − 1�2

Rxs���z��xs���,��
� Nxs���

2����xs���,�����xs���,��
e−N�R−1+xs����ln xs���R−1�+Ss„xs���,�…�. �38�

Here, the time-dependent saddle point x=xs��� is determined
by the equation

xsR�1 + c�xs,��e�� = 1, �39�

where

c�x,�� = − �2�e� − 1��−1�1 − x + 2 sinh �

− ��1 − x + 2 sinh ��2 − 4�1 − x��e� − 1�� . �40�

Furthermore, the function Ss�x ,�� is given by

Ss�x,�� = �1 + c�−1��1 + c − c2�ln�1 + ce��

+ c�1 + c�e��ln�1 + ce�� − 1� − ce−� ln�1

+ ce��� + c − ln�1 + c� , �41�

with c=c�x ,�� from Eq. �40�. Finally,

��x,�� = R−1 + x�ln xR − 1� + Ss�x,�� ,

and we have written for brevity ���z��xs ,�� ,xs��� ,��
	���xs��� ,��.

Equation �38� is one of the main results of this work. It
describes a time-resolved disease extinction rate W��t�
which smoothly changes from W1 at t��� to W2 at t���.
Figures 3 and 4 show, by solid lines, typical examples of this
behavior for two different sets of parameters.

To test the theoretical time-dependent extinction rate
W��t� predicted by Eq. �38� we solved numerically the �trun-
cated version of the� original master equation �1�, using the
ODE45 solver of MATLAB. A very good agreement between
the theory and the numerical solution was obtained for N
=200 and 
=10−3 �see Fig. 3�. Here, the time-scale-
separation criterion �N�1 was satisfied.

Importantly, the �quite restrictive� criterion �N�1 can be
replaced with a much less restrictive one ��1 if one does
not care about pre-exponential factors in Eq. �38�. Indeed,

criterion �N�1 appears when one implements the time-
scale-separation procedure directly in the master equation
�1�. One can follow a different strategy, however, and start
with applying a time-dependent WKB approximation to the
full two-dimensional master equation �1�. A proper WKB
ansatz is

Pn,m�t� = a�x,y,t�exp�− NS�x,y,t�� , �42�

where x=n /N and y=m /N. In the leading WKB order one
obtains a two-dimensional time-dependent Hamilton-Jacobi
equation. The corresponding Hamiltonian H�x ,y , px , py , t ;��
is independent of N. The small parameter ��1, present in
the Hamiltonian, allows one to perform a time-scale-
separation procedure by seeking, for t��1,

S�x,y,t� = S0�x,y,�t� + �S1�x,y,�t� + �2S2�x,y,�t� + ¯ ,

�43�

where S0�S1� ¯ �1, and S0�x ,y ,�t� has a separable struc-
ture. Our derivation, leading to Eq. �38�, yields S0�x ,y ,�t�
and a�x ,y ,�t� but not S1 ,S2 , . . .. The �S1 term makes a con-
tribution of order �N in the exponent of Eq. �42�. This con-
tribution is negligible if �N�1. In this case the pre-exponent
in Eq. �38� is accurate as we have already seen. On the con-
trary, if �N�1, the unknown correction �S1�x ,y ,�t� be-
comes significant, and the account of the pre-exponent in Eq.
�38� would be in excess of accuracy. Now, what happens if
we only need an accurate estimate of ln W�t ,�� /N at N�1?
Here, both the pre-exponent in Eq. �38� and the unknown
correction �S1�x ,y ,�t� become negligible, and the result is
described by the exponent in Eq. �38�. Indeed, we observed
an excellent agreement between theory and numerical calcu-
lations for ln W�t ,�� when the parameter �N was comparable
with or even larger than 1 �see, for example, Fig. 4�. The
numerical results, presented in Figs. 3 and 4 are converged
both with respect to the truncation of the master equation and

0 1 2 3 4 5
0

0.5

1x 10
−40

µ t

W

FIG. 3. �Color online� The time-resolved disease extinction rate
W versus the rescaled time ��t=�t for N=200, R=10, and 

=10−3 as predicted by Eq. �38� �solid line� and obtained by a nu-
merical solution of the �truncated� master equation �1� �dashed
line�.

0 1 2 3 4 5
−50

−40

−30

−20

ln W

µ t

FIG. 4. �Color online� The natural logarithm of the time-
resolved disease extinction rate W versus the rescaled time ��t
=�t for N=100, R=4, and 
=10−2 as predicted by Eq. �38� �solid
line� and obtained by a numerical solution of the �truncated� master
equation �1� �dashed line�.
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with respect to the error tolerance of the MATLAB solver.

D. Mean time to extinction

The time-resolved extinction rate, which we have calcu-
lated in this work, provides a sharp characterization of the
stochastic population dynamics. This characterization is lost
if one is only interested in the average extinction quantities
such as the MTE �ex of the population. To better understand
this point, consider the disease extinction probability as a
function of time,

P0�t� 	 

n=0

�

Pn,0�t� .

At times �1	 t��ex, the growth rate of P0�t� obeys the rela-
tion

dP0�t�
dt

� W�t,�� , �44�

which follows from Eq. �8� and the conservation of the total
probability. At these times the extinction probability rate ex-
periences a smooth but exponentially large change with time
on the time scale of ��.

At longer times, t��ex���, Eq. �44� no longer holds and
should be replaced with the relation

dP0�t�
dt

� W2e−W2t. �45�

The mean time to extinction �ex can be obtained by averag-
ing t over dP0�t� /dt �which is the probability distribution of
extinction times�,

�ex = �
0

�

t
dP0�t�

dt
dt . �46�

The dominant contribution to this integral comes from times
t���, where dP0�t� /dt is determined by Eq. �45�. Therefore,
up to exponentially small corrections,

�ex � �
0

�

W2te−W2tdt = 1/W2. �47�

That is, the time-resolved extinction rate W�t ,�� provides
much more detailed information about the system dynamics
than the MTE �which only probes the late-time asymptote of
the extinction rate�.

IV. DISCUSSION

We have addressed extinction of a population in a two-
population system in the case when the population
turnover—renewal and removal—is much slower than all
other processes. The ensuing time-scale separation makes it
possible to introduce a short-time quasistationary extinction
rate W1 and a long-time quasistationary extinction rate W2,
and develop a time-dependent theory of the smooth transi-
tion between the two rates. The quantities W1 and W2 coin-
cide with the extinction rates when the population turnover is

absent altogether and present, but very slow, respectively.
The exponential difference between the two rates reflects fra-
gility of the extinction rate in the population dynamics with-
out turnover �9�. The present work suggests an alternative
picture of the extinction rate fragility: in the time domain
instead of the 
 domain where it was originally established.

Our main results can be expressed in the following way.
We started out by presenting the probability distribution

Pn,m�0�t� in a factorized form: Pn,m�0�t�= P̄k�t�Pk�m�, where

P̄k�t� is the probability to have the total population size k,
when at least one individual is infected, and Pk�m� is the
probability to have m�0 infected individuals, when the total
population size is k. At t��1 and �N�1 the Pk�m� distribu-
tion is independent of time to the zero order in �N; the popu-

lation turnover only affects P̄k�t�. As a result, the time-
dependent extinction rate W�t ,�� is determined by the
extinction rate for the total population size k, obtained for

�=0 and averaged over the slow time-dependent P̄k�t� distri-
bution. The short-time quasistationary extinction rate W1 cor-
responds to the initial probability distribution of the total
population size k, whereas the long-time quasistationary ex-
tinction rate W2 corresponds to the steady-state k distribu-
tion. Under less restrictive conditions ��1 and N�1 our
theory accurately predicts the logarithm of the time-
dependent extinction rate ln W�t ,��.

We have shown that the time-resolved quasistationary ex-
tinction rate encodes a more detailed information about the
stochastic dynamics than the average quantities such as the
mean time to extinction. The latter quantity is determined by
the late-time asymptote W2 of the time-resolved extinction
rate.

Our analytical approach can be used in a host of two-
population models which exhibit a long-lived quasistationary
state on the way to extinction, and where a disparity between
the process rates enables one to separate the system into two
one-dimensional subsystems: the fast and the slow. One can
envision two different scenarios in such systems. In one sce-
nario, extinction takes place only in the slow subsystem,
whereas the fast subsystem merely modifies the effective
process rates, as in Ref. �8�. In another scenario the problem
is reducible �as in the SIS model with a slow population
turnover which we have considered here� to averaging the
instantaneous extinction rate, generated by the fast sub-
system, over the time-dependent distribution of the slow sub-
system. For a sufficiently large population size, the instanta-
neous extinction rate, generated by the fast subsystem, can
be accurately calculated via the WKB approximation �5�.
How can one find the time-dependent population size distri-
bution of the slow subsystem? For the SIS model the one-
dimensional master equation �17� for the slow population
turnover is decoupled from the fast subsystem, and even ex-
actly solvable. In general one cannot hope for such a dra-
matic simplification, and the fast subsystem will modify the
effective process rates of the slow subsystem, as in Ref. �8�.
It is important, however, that this effect can be described by
a time-dependent WKB theory once the corresponding large
parameter is present.
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